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

The development of the theory of estimation of gametic disequilibrium for multiallelic systems is

particularly necessary, since a large number of the genetic markers available at present are highly

polymorphic multiallelic systems. The D« coefficient is one of the most commonly used measures of

the extent of overall disequilibrium between all possible pairs of alleles at two multiallelic loci.

Nevertheless, the sampling properties of this measure of overall disequilibrium, are to date,

unknown. In this work, we have derived explicit expressions by large-sample theory to compute the

approximate sampling variance of D= « between pairs of multiallelic loci, when samples of haplotypes

are taken from populations. Formulae for calculating the asymptotic sampling variance were

checked by Monte Carlo simulation. In addition, the magnitude of the sampling variance of D= « was

investigated under different scenarios of disequilibrium between multiallelic loci. Extensive

simulations were also carried out for describing the sampling distribution of D= «, conditioned on the

sample size, number of alleles and their frequencies, and disequilibrium components. It was found

that the sampling distribution of D= « generally approaches well the theoretical normal distribution for

experimental sample sizes, particularly when loci have many alleles. Disequilibrium data between

microsatellite loci of human chromosome 11p are used for illustration. These investigations increase

substantially our knowledge about this widely used measure of overall disequilibrium, which is

relevant to evaluate disequilibrium between multiallelic loci in populations.



The study of non-random association of alleles at different loci, or gametic disequilibrium, is useful

for revealing the location and relationships of the genes along the chromosomes, the relative influence

of different evolutionary forces, and the history of populations. Searching for gametic disequilibrium

between pairs of multiallelic loci often makes use of the theory of estimation for the two-allele, two-

locus model. The alleles of multiallelic loci are frequently reduced to diallelic systems, by combining

all rare alleles at each locus into a single class. However, this method of condensing the information

generally tends to underestimate disequilibrium, especially as the number of pooled alleles increases

(Weir & Cockerham, 1978; Sham & Curtis, 1995; Terwilliger, 1995). It may also obscure potentially

relevant information for discriminating between the evolutionary forces generating disequilibrium in

populations (Hedrick & Thomson, 1986; Hedrick, 1987; Klitz & Thomson, 1987; Thomson & Klitz,

1987; Klitz et al. 1992; Slatkin, 1994). In addition, pooling may decrease the ability of disequilibrium

mapping to refine the location of a disease gene (Nakamura et al. 1987; Watkins et al. 1994; Chapman

& Wijsman, 1998). Therefore, it is necessary to apply a proper theory of estimation of disequilibrium
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for multiallelic loci, as an alternative to that for diallelic loci. This need is especially acute with the

advent of polymorphic markers with many alleles, such as microsatellite loci.

Recently, considerable progress has been made in the development of statistical procedures to

detect significant deviations from random association for multiallelic two-locus systems (Weir &

Cockerham, 1978; Excoffier & Slatkin, 1995; Long et al. 1995; Zaykin et al. 1995; Slatkin & Excoffier,

1996). There are difficulties in reliably evaluating and comparing the strength of disequilibrium

across pairs of multiallelic loci. Probabilities resulting from significance tests are frequently used as

a measure of the extent of disequilibrium, and for comparisons among pairs of loci and populations

(Peterson et al. 1995; Laan & Pa$ a$ bo, 1997; Huttley et al. 1999). Nevertheless, probabilities indicate

only whether there is some real gametic disequilibrium, not whether this is weak, moderate or strong.

It must also be recognized that the power of statistical tests to detect nonrandom associations

depends on the sample size, the statistical tests, the number of alleles, their frequencies and whether

the association is positive or negative (Brown, 1975; Weir & Cockerham, 1978; Zapata & Alvarez,

1992, 1993, 1997a ; Slatkin, 1994; Ott & Rabinowitz, 1997; Zapata et al. 1997). Therefore,

probabilites do not appear to be the best tools for comparing disequilibrium among pairs of loci ;

coefficients or indices of association should be used as well (Zapata & Alvarez, 1993; Kidd et al. 1998;

Kruglyak, 1999; Ott, 1999).

Although different coefficients can be used for measuring the magnitude of overall disequilibrium

between all possible pairs of alleles at two multiallelic loci (Karlin & Piazza, 1981; Hedrick, 1987;

Klitz et al. 1995; Kidd et al. 1998; Zhao et al. 1999), there has been, in general, little systematic

evaluation of their properties. A widely used measure of overall disequilibrium is the D« coefficient

introduced by Hedrick (1987), which is a multiallelic extension of Lewontin’s (1964) standardized

measure of disequilibrium. The D« coefficient of overall disequilibrium has the advantageous

property that its range is quite independent of the polymorphisms at the loci, thus allowing

comparisons across loci or populations (Zapata, 2000). Nevertheless, the sampling properties of this

measure of overall disequilibrium have not been investigated. Naturally, understanding the

sampling properties of D« is useful for any descriptive or inferential analysis and can give some

insight into the important factors affecting the estimation of disequilibrium between pairs of

multiallelic loci, such as the number of alleles at the loci and the sample size. Formulae based on

asymptotic theory for calculating the sampling variance of D= « in a two-allele system have recently

been obtained (Zapata et al. 1997), but the multiallelic case remains unresolved. It would also be

desirable to know the sampling distribution of D« to assess what are the more convenient statistical

tests for testing differences of the extent of overall disequilibrium over pairs of loci.

The distribution of D« for two-allele and multiallelic systems has already been characterized for

samples from populations at equilibrium under neutrality (Hudson, 1985; Hedrick & Thomson,

1986; Hedrick, 1987), which has allowed comparison of the observed disequilibria to the expectations

of neutrality (Hedrick & Thomson, 1986; Klitz & Thomson, 1987; Thomson & Klitz, 1987).

However, the variation of disequilibrium is the sum of two sampling processes (Weir & Hill, 1980;

Devlin et al. 1996; Weir, 1996). Firstly, the evolutionary sampling process due to the transmission

of haplotypes from parent to offspring, which is a function of the effective population size each

generation. Secondly, the statistical sampling process due to the sampling of a finite number of

haplotypes to estimate the population disequilibrium, which is dependent on sample size. Therefore,

the statistical or sampling variance is a relevant force of variation to be taken into account, along

with evolutionary or stochastic variance, for interpreting disequilibrium patterns under the neutral

model (Devlin et al. 1996; Weir, 1996). In addition, understanding the sampling variance of D= « would

allow us to compare disequilibrium intensities across loci without specifying any particular

population model. Such comparisons may provide a valuable tool in interpreting observations in
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populations. Comparisons of the intensities of disequilibrium can be made among locus pairs that

differ with respect to a factor that is expected to cause those disequilibria. For instance, we will be

able to determine whether differences in disequilibrium intensity between pairs of loci parallel

geographic variation of allele frequencies at the loci ; or whether greatest disequilibria are restricted

to functionally related loci. In these cases, we would have some evidence for migration and selection,

respectively. On the other hand, it may also be interesting to test for differences in the extent of

disequilibrium, irrespective of the evolutionary force (s) generating them. This is the case, for

example, when disequilibrium is used as a tool of fine-scale disease-gene localization, because it only

uses the principle that alleles at loci nearest a particular disease-influencing locus will show stronger

gametic disequilibrium with the disease than alleles at distant loci (Ott, 1999).

In this paper, we develop analytical formulae, by large-sample theory, for calculation of the

approximate sampling variance of D= « between multiallelic loci, for a sample of haplotypes taken from

a population. Monte Carlo simulations were used to check the sampling variance of D= « and to

investigate the sampling distribution of this disequilibrium measure.

   D= «   

There are several ways of describing multiple-allele gametic disequilibrium that provide very

useful information depending on the particular interest of the study. The analysis of disequilibrium

for each pair of alleles or haplotype shows which haplotypes are in excess and which are deficient,

relative to the expectations of random association. There is a global disequilibrium analysis that

condenses the information of disequilibrium between all the alleles at two loci.

Consider two polymorphic loci, A and B. Let A
i
be an allele of locus A (i¯ 1, …, m), B

j
an allele

of locus B ( j¯ 1, …, n), and p#
ij

the relative frequency of gamete A
i
B

j
in N haplotypes sampled from

a population. Then p#
i.
¯3

j
p#
ij

and p#
.j
¯3

i
p#
ij
, giving the estimated frequency of the alleles A

i
and

B
j
, respectively. There are a total of mn coefficients of gametic disequilibrium between alleles A

i
and

B
j
, which can be defined as

D
ij
¯p

ij
®p

i.
p
.j

and estimated as Dq
ij
¯pW

ij
®pW

i.
pW
.j

The approximate variance of D=
ij

is

Var (Dq
ij
)E

p
i.
(1®p

i.
)p

.j
(1®p

.j
)­D

ij
(1®2p

i.
)(1®2p

.j
)®D#

ij

N

(Weir, 1979).

A more useful measure of the strength of disequilibrium for each pair of alleles is the standardized

disequilibrium measure D«
ij
, which can be defined as

D«
ij
¯

D
ij

D
max

and estimated as Dq «
ij
¯

Dq
ij

Dq
max

where Dq
max

¯min [pW
i.
pW
.j
, (1®pW

i.
)(1®pW

.j
)] when Dq

ij
! 0 or

Dq
max

¯min [pW
i.
(1®pW

.j
), (1®pW

i.
)pW

.j
] when Dq

ij
" 0.

(Lewontin, 1964; Hedrick, 1987). If (p
ij

and}or 1®p
i.
®p

.j
­p

ij
)¯ 0 then D«

ij
¯®1, and if (p

i.
®p

ij

and}or p
.j
®p

ij
)¯ 0 then D«

ij
¯ 1 (Zapata, 2000). The formulae of the asymptotic sampling variance

of D= « for two-allele systems (Zapata et al. 1997) can be adapted for calculation of the variance of D= «
ij

as
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ij
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ij
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where

a¯ 1®p
.j
, b¯p

.j
for D«

ij
! 0 and a¯p

.j
, b¯ 1®p

.j
for D«

ij
" 0; X

ij
is

p
ij
, p

i.
®p

ij
, p

.j
®p

ij
and 1®p

i.
®p

.j
­p

ij
when Dq

max
is

p
i.
p
.j
, p

i.
(1®p

.j
), (1®p

i.
) p

.j
and (1®p

i.
)(1®p

.j
), respectively.

A global disequilibrium measure of the extent of disequilibrium between all the alleles at two loci

can be defined as

D«¯ 3
m

i="

3
n

j="

p
i.
p
.j
rD«

ij
r and estimated as Dq «¯ 3

m

i="

3
n

j="

pW
i.
pW
.j
rDq «

ij
r

which makes use of the absolute values of D= «
ij

weighted by the frequencies of the gametes expected

at gametic equilibrium (Hedrick, 1987). The D« coefficient varies from 0 to a maximum value equal

or very close to 1, depending on the number of alleles and their frequencies (Zapata, 2000). This

disequilibrium measure can be alternatively estimated as

Dq «¯ 3
D

+

pW
i.
pW
.j
Dq «

ij
®3

D
−

pW
i.
pW
.j
Dq «

ij
,

where

Dq +¯²ij}Dq «
ij
" 0´

Dq −¯²ij}Dq «
ij
! 0´.

The variance of D= « becomes

Var(Dq «)¯3
i

3
j
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.j
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)­3

D
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3
D

+
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).

To calculate this expression, we make use of the delta-method for deriving standard errors for

large-sample inferences (Kendall & Stuart, 1977; Agresti, 1990). Let Φ denote a differentiable

function of ²p
ij
´, and let Φ= denote the sample value of Φ for a multinomial sample, then as NU£,

the distribution of oN(Φ= ®Φ)}σ converges to a standard normal,

σ#¯ 3
m

i="

3
n

j="

p
ij
(Φij)#®

E

F

3
m

i="

3
n

j="

p
ij
Φij

G

H

#

, where Φij¯
¦Φ

¦p
ij

.

The asymptotic variance depends on the cell probabilities ²p
ij
´ and the partial derivatives of the

measure with respect to ²p
ij
´. In practice, we replace ²p

ij
´ and Φij by their sample values, yielding a

ML estimate σ# # of σ#.

We make use of the following notations:

(i) α
i
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j
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p
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)
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where α#
i
, β#

j
, and D=

ij
are ML estimators of α

i
, β

j
and D

ij
, respectively.
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With these notations, all the variances and covariances included in the formula of the Var (D= «) can

be expressed as Cov(α#
i
β#
j
Dq

ij
,α#

k
β#
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), which, after applying the delta-method result in
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.

From here, we can distinguish four possible cases :

(A) i¯ k, j¯ l; (B) i¯ k, j1 l; (C) i1 k, j¯ l ; (D) i1 k, j1 l.

The covariance for each case is given by,

(A) i¯ k, j¯ l
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α
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Estimates of the asymptotic variance for D= « are obtained by replacing all frequencies used in the

definitions with the corresponding observed values. When α
i
¯β

j
¯ 1 and i¯ k, j¯ l, the formula

of NCov(α#
i
β#
j
D=

ij
,α#

i
β#
j
D=

ij
)¯NVar(α#

i
β#
j
D=

ij
) coincides with that of NVar(D=

ij
) mentioned above.

A program (2ld) to compute the sampling variance between multiallelic markers using the present

approach is available from Jin Hua Zhao (http:}}www.iop.kcl.ac.uk}IoP}Departments}
PsychMed}GepiBSt}software.stm).

        D= «

We conducted Monte Carlo simulations to check the performance of the asymptotic sampling

variance of D= «, as well as to investigate its sampling distribution. In addition, we have explored in

some detail the behaviour of the sampling variance and distribution of D= « under different scenarios

of disequilibrium between multiallelic loci.
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Table 1. Asymptotic sampling variance of Dq « and Monte Carlo simulations describing the distribution of

Dq « between multiallelic loci with equifrequent alleles

Examples of disequilibrium
Asymptotic

variance
Variation
coefficient

Monte Carlo simulations
statistics describing the distribution of D= «

m¯n p
i.
¯p

.j
D«

ij
a D«

ij
b D« N s# CV DG « s# g

"
g
#

D
k−s

4 0±250 0±200 ®0±600 0±400 200 0±0017 0±10 0±410 0±0014 ®0±204 ®0±254 0±033*
400 0±0009 0±08 0±405 0±0008 ®0±081 ®0±012 0±024ns

1000 0±0003 0±04 0±404 0±0003 ®0±082 ®0±037 0±019ns

0±147 ®0±440 0±293 200 0±0021 0±16 0±301 0±0019 0±074 ®0±060 0±019ns

400 0±0011 0±11 0±300 0±0009 0±000 ®0±305 0±027ns

1000 0±0004 0±07 0±297 0±0004 0±044 0±013 0±015ns

6 0±167 0±127 ®0±636 0±382 198 0±0016 0±10 0±394 0±0011 ®0±112 0±274 0±025ns

394 0±0008 0±07 0±386 0±0006 ®0±005 0±062 0±020ns

990 0±0003 0±05 0±384 0±0002 ®0±024 ®0±159 0±021ns

8 0±125 0±095 ®0±667 0±381 192 0±0016 0±10 0±412 0±0008 ®0±042 0±100 0±014ns

384 0±0008 0±07 0±390 0±0005 ®0±139 0±191 0±021ns

960 0±0003 0±05 0±384 0±0002 ®0±042 0±028 0±020ns

10 0±100 0±056 ®0±500 0±278 200 0±0020 0±16 0±365 0±0006 ®0±022 ®0±065 0±016ns

400 0±0010 0±11 0±313 0±0004 ®0±026 0±116 0±013ns

1000 0±0004 0±07 0±284 0±0002 ®0±058 0±023 0±015ns

ai­j¯ 2k.
bi­j¯ 2k­1; k ` IN.
*p! 0±05; ns, non significant.

Undoubtedly, the sampling variance and distribution of D= « are potentially affected by a large

number of factors. These include sample size, number and frequencies of alleles at the loci, and

components of disequilibrium (overall and inter-allelic disequilibria). Consequently, to explore all

possible variations of multiallelic systems becomes prohibitively large, and to ascertain what are the

effects attributable to each factor is not straightforward. Nevertheless, an exhaustive analysis of all

factors and combination of involved factors was performed, although it would be too tedious to be

presented here. For the sake of brevity, some representative examples illustrating the most

important conclusions from the present analysis are shown.

Let us first consider what happens when there are the same number of equifrequent alleles at both

loci (m¯n and p
i.
¯ q

.j
¯ 1}m) and arrays of haplotype frequencies are constructed to give only two

different D«
ij

values. These conditions can be obtained if m¯n¯ 2k (k ` IN) and there are only two

different haplotype frequencies (X, X«), verifying that if i­j¯ 2k and i­j¯ 2k­1, then the relative

haplotype frequencies, p
ij
, are X and X«, respectively. It is clear that these assumptions can be easily

violated in real studies. However, we have begun by using this simplified scenario because it will

facilitate investigation of the impact that different factors have on the sampling variance and

distribution of D= «. It should also be noted that, for the same number of equifrequent alleles, the D«
coefficient always ranges from 0 to 1 (Zapata, 2000). Table 1 shows the D« values along with their

asymptotic sampling variances and the corresponding coefficients of variation (CV), for numerical

cases involving different numbers of alleles (m¯ 4, 6, 8 and 10), several combinations of D«
ij
, p

i.
and

p
.j

values, and sample sizes (NE 200, 400 and 1000). We have examined a minimum sample size of

around 200, which seemed large enough to avoid the absence of haplotypes with low expectations,

and yet small enough to be realistic. The problem of smaller sample sizes and haplotype classes with

too low expectations will be examined below. Monte Carlo simulations were carried out by taking

1000 randomly drawn haplotype samples of size N from populations with a given set of haplotype

frequencies and disequilibrium values, and obtaining the distribution of D= « that results. Table 1 also

gives the statistics used to describe the sampling distribution of D= «. These statistics were the mean
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(DG «), variance (s#), skewness and kurtosis (g
"
and g

#
, respectively) and the Kolmogorov–Smirnov test

(D
k−s

) for goodness of fit to a normal distribution (Sokal & Rohlf, 1995).

Overall, the results are very satisfactory, and several points can be made. First, as shown in Table

1 the asymptotic sampling variances of D= « are generally in good agreement with the empirical

variances in the computer simulation, which demonstrates that formulae for the asymptotic

sampling variance of D= « were indeed well derived. Second, our observations show that the sampling

variance decreases as the sample size increases (under otherwise equivalent conditions), but sampling

variances associated with the estimates of D« are not too large. Coefficients of variation ranged from

0±04 to 0±16 and averaged 0±09³0±01. In addition, it appears that the variance does not necessarily

decline as the number of alleles increases, judged by the values of the coefficients of variation given

in Table 1. By way of illustration, note that the coefficients of variation are the same when the

number of alleles increases from six to eight for similar D« values and sample sizes. Third, Monte

Carlo simulations show that the empirical distribution of D= « approaches the normal distribution with

the exception of the four-allele case. Thus, empirical distributions of D= « for the four-allele case do not

always fit a normal distribution when the sample size is equal to 200 haplotypes, although they are

normally distributed for larger sample sizes.

The above conclusions refer only to equifrequent alleles and low diversity of interallelic

disequilibria. As this is not very realistic, we now consider the more general situation of

nonequifrequent alleles at the loci, and greater heterogeneity of interallelic disequilibria. We have

also examined a range of sample sizes that includes smaller values as well as a higher number of

alleles. Interestingly, Table 2 shows that the aforementioned conclusions also apply to this more

general situation. First, the sampling variances are, in general, quite close to the empirical variances

except when the number of alleles is high in comparison with the sample size. In addition, the

asymptotic sampling variance is always higher than the empirical variance. Assuming Monte Carlo

results represent a better estimate of the uncertainty associated with the estimated parameter, tests

of disequilibrium hypotheses based on the asymptotic variance will be conservative. However, it

may be that the Monte Carlo approach does not provide more exact estimates of the true variance

than large sample theory. Thus, the magnitude of the sampling variance can be underestimated by

Monte Carlo if certain haplotypes have low expectations such that the probability of obtaining

samples showing reduced variability is high. In fact, for typical microsatellite datasets, many

haplotypes carrying alleles at very low frequencies are unlikely detected due to their low

expectations (see Peterson et al. 1995). On the other hand, ML estimators are asymptotically efficient

and unbiased (Elandt-Johnson, 1971). It should also be noted that the mean value of D= « over the

Monte Carlo replicates differ substantially from the real value of D«, for smaller sample sizes. Second,

the sampling variance undergoes conspicuous oscillations across disequilibrium examples, although

its magnitude is not, in general, too large. Coefficients of variation ranged from 0±08 to 0±97 and

averaged 0±30³0±03. There is no apparent trend for sampling variance decreasing with an increasing

number of alleles. Third, distributions of D= « generally fit to the normal curve especially when one

increases the number of alleles at the loci. We found no evidence for deviations from normality when

m¬n" 18.

We have not yet considered in our analyses that distributions of D= «
ij
, obtained either from

experimental disequilibrium studies or under neutrality equilibrium models, typically exhibit large

tails of D= «
ij
¯³1 values (notably D= «

ij
¯®1), most probably due to the absence of haplotypes with low

expectations (Hedrick & Thomson, 1986). Consequently, it was found that those distributions of D= «
ij

deviate greatly from normal distribution unless D= «
ij
¯³1 values are excluded. Therefore, we decided

to explore the performance of the sampling distribution of D= «, when a large number of D= «
ij
¯³1

values is found, on the basis of a real data set.
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Table 2. Asymptotic sampling variance of Dq « and Monte Carlo simulations describing the distribution of Dq « between multiallelic loci with

nonequifrequent alleles

Examples of disequilibrium
Asymptotic

variance
Variation
coefficient

Monte Carlo simulations
statistics describing the distribution of D= «

Range of

m n p
i.

p
.j

rD«
ij
r D« N s# CV DG « s# g

"
g
#

D
k−s

3 3 0±30–0±40 0±32–0±36 0±220–0±580 0±436 50 0±0123 0±25 0±459 0±0099 ®0±043 ®0±022 0±016ns

100 0±0061 0±18 0±444 0±0053 0±023 ®0±169 0±013ns

200 0±0031 0±13 0±438 0±0027 ®0±073 ®0±246 0±025ns

400 0±0015 0±08 0±436 0±0013 ®0±055 0±256 0±024ns

3 6 0±28–0±30 0±12–0±24 0±007–0±260 0±108 50 0±0109 0±97 0±290 0±0044 0±197 ®0±088 0±022ns

100 0±0054 0±68 0±218 0±0028 0±363 0±115 0±037*
200 0±0027 0±48 0±173 0±0017 0±242 0±017 0±028ns

400 0±0014 0±35 0±145 0±0009 0±253 ®0±036 0±026ns

3 10 0±23–0±44 0±04–0±24 0±005–0±640 0±224 100 0±0054 0±32 0±332 0±0030 0±050 0±165 0±018ns

200 0±0027 0±23 0±280 0±0016 0±099 ®0±031 0±018ns

400 0±0014 0±17 0±252 0±0009 0±104 0±132 0±018ns

4 4 0±24–0±26 0±12–0±38 0±050–0±700 0±228 50 0±0059 0±34 0±327 0±0048 0±169 ®0±270 0±024ns

100 0±0029 0±24 0±274 0±0023 ®0±016 0±004 0±028ns

200 0±0015 0±17 0±248 0±0011 0±042 ®0±002 0±017ns

400 0±0007 0±12 0±235 0±0006 ®0±120 ®0±207 0±026ns

4 6 0±22–0±28 0±12–0±26 0±007–0±490 0±174 50 0±0091 0±55 0±328 0±0040 0±126 ®0±080 0±022ns

100 0±0032 0±33 0±260 0±0024 0±083 ®0±277 0±024ns

200 0±0023 0±28 0±219 0±0012 0±125 ®0±170 0±022ns

400 0±0011 0±19 0±194 0±0007 ®0±048 ®0±103 0±020ns

4 10 0±19–0±35 0±08–0±15 0±010–0±600 0±144 100 0±0046 0±47 0±309 0±0018 0±123 ®0±137 0±021ns

200 0±0023 0±33 0±242 0±0010 0±155 ®0±034 0±023ns

400 0±0012 0±24 0±202 0±0006 0±142 0±223 0±019ns

800 0±0006 0±17 0±174 0±0003 0±015 ®0±099 0±026ns

6 6 0±08–0±24 0±09–0±24 0±010–0±630 0±100 100 0±0047 0±69 0±264 0±0016 0±171 0±223 0±023ns

200 0±0024 0±49 0±197 0±0010 0±145 0±010 0±023ns

400 0±0012 0±35 0±156 0±0005 0±044 ®0±236 0±023ns

800 0±0006 0±24 0±130 0±0003 0±174 ®0±256 0±025ns

6 10 0±13–0±23 0±07–0±15 0±007–0±530 0±178 200 0±0023 0±27 0±291 0±0009 0±068 ®0±059 0±023ns

400 0±0012 0±19 0±242 0±0006 0±144 0±104 0±023ns

800 0±0006 0±14 0±213 0±0003 0±092 0±042 0±015ns

10 10 0±07–0±13 0±07–0±17 0±000–0±620 0±160 200 0±0021 0±29 0±323 0±0006 0±062 0±014 0±018ns

400 0±0010 0±20 0±254 0±0004 0±174 0±017 0±024ns

800 0±0005 0±14 0±212 0±0002 0±082 ®0±071 0±027ns

10 14 0±05–0±15 0±05–0±13 0±001–0±430 0±098 400 0±0011 0±34 0±257 0±0003 0±159 0±153 0±016ns

800 0±0005 0±22 0±195 0±0002 0±138 0±014 0±008ns

14 14 0±05–0±15 0±05–0±12 0±000–0±565 0±133 400 0±0010 0±23 0±308 0±0003 0±071 0±011 0±018ns

800 0±0005 0±17 0±238 0±0002 0±032 ®0±076 0±009ns

*p! 0±05; ns, non significant.
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Fig. 1. (a) Frequency distribution of D= «
ij

values for D11S926 and D11S4124 microsatellite loci in a sample
of 810 haplotypes from the Galician population (Spain) ; s# is the asymptotic variance of D= «. (b) Frequency
distribution of D= « for D11S926 and D11S4124 was obtained by bootstrap simulation from 1000 replicate
random haplotype samples of size 810; s# is the empirical variance of D= «.

Let us consider disequilibrium data between D11S926 and D11S4124 microsatellite loci located on

the 11p human chromosome for a sample of 810 haplotypes taken from the Spanish population

(Zapata & Rodrı!guez, unpublished results). The number of alleles detected in that sample, for

D11S926 and D11S4124, was eight and nine, respectively. Allele frequencies ranged from 0±005 to

0±457 for D11S926 and from 0±003 to 0±367 for D11S4124 (averages 0±125³0±054 and 0±111³0±050,

respectively). Figure 1a shows the observed distribution of D«
ij

values. As expected, it can be seen

that the distribution of D= «
ij

values between all alleles at the two microsatellite loci contains a

substantial proportion of D= «
ij
¯³1 (32}72), and therefore, it clearly deviates from the theoretical

normal distribution (D
k−s

¯ 0±228; p! 0±01). A closer inspection of the data shows that those

D= «
ij
¯³1 are exclusively explained by haplotypes, absent from the sample, bearing alleles at very low

frequency at the two loci (data not shown). The behaviour of the resulting distribution of D= « under

these extreme circumstances was also investigated by bootstrap simulation. We constructed a

population at the observed haplotype frequencies and 1000 replicate random haplotype samples of

size 810 were drawn, with replacement, from the population. Finally, the D= « value was obtained for

each of the 1000 random samples. As shown in Figure 1b, the resulting empirical distribution of D= «
values approached a normal distribution very closely (D

k−s
¯ 0±024, non significant). This result can
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be easily understood, taking into account that D= « is a weighted mean of the D= «
ij

values by their

corresponding expected haplotype frequencies at gametic equilibrium. Then, maximum values of

D= «
ij
¯³1 are outweighed greatly by their low expectations and they have, therefore, a small

repercussive effect on the D« measure of overall disequilibrium.



We have obtained the expressions for estimating the approximate sampling variance of the D«
measure of overall disequilibrium between pairs of multiallelic loci. This allows us to define the degree

of accuracy of D« estimates by means of their corresponding asymptotic standard errors, as well as

to investigate the relative influence of the different factors associated with its estimation.

It is often assumed that the variances of disequilibrium estimates tend to be too large, but

disequilibrium can be more easily detected to the extent to which the number of alleles at loci

increases. In fact, it seems that the expected variance of disequilibrium under neutrality tends to be

quite large and decreases as the number of alleles increases. In addition, the statistical power to

detect disequilibrium increases when there are more alleles (Hedrick & Thomson, 1986; Hedrick,

1987; Slatkin, 1994). Nevertheless, those conclusions concerning the evolutionary variance cannot be

transferred automatically to the sampling variance, because they are obtained under very different

scenarios (see Introduction). Our observations suggest that the sampling variances of D« estimates

are not too large for realistic sample sizes. This provides good opportunities for testing hypotheses

concerning differences in disequilibrium intensity. Furthermore, it appears that the sampling

variance of D= « does not necessarily decline with an increasing number of alleles. Fluctuations in the

magnitude of the sampling variance depend not only on the number of alleles at the two loci, but also

on other factors and combinations of factors, such as the allelic frequencies and the intensity of the

interallelic disequilibria, for given D« values and sample sizes.

Monte Carlo simulations show that generally D= « is normally distributed, especially when the

number of alleles at the loci increases. This result is not surprising since D= « is defined as a weighted

mean of D= «
ij

values (in absolute value) and, according with the central limit theorem, the sampling

distribution of the means of random samples of any distribution, will approach the normal

distribution if the sample size is sufficiently large (Sokal & Rohlf, 1995). In addition, ML estimators

are asymptotically normally distributed (Elandt-Johnson, 1971). Interestingly, the assumption of

normality of D= « for a high number of alleles is also demonstrated to be appropriate, even when there

are a high proportion of D= «
ij
¯³1. This is illustrated by disequilibrium data between microsatellites

of the human chromosome 11p. An assumption of normality allows us to apply parametric standard

statistical procedures for testing differences in the intensity of disequilibrium across loci. Using the

sampling variance of D= «, confidence intervals can be rapidly constructed, without the need to use

more-time consuming statistical methods such as resampling (Efron & Tibshirani, 1993; Good, 1994;

Weir, 1996). In addition, parametric statistical procedures are preferred in comparison to resampling

methods because they maximize the statistical power (Crowley, 1992; Good, 1994). It must be noted

that a lack of statistical power of tests used for detecting disequilibrium has traditionally been one

of the most important factors causing underestimation of the importance of disequilibrium in

populations (Zapata & Alvarez, 1992, 1993, 1997a).

On the other hand, our observations show that D= « does not always follow a normal distribution

when loci have a more reduced number of alleles (m¬n! 20). However, tests of goodness of fit to

a normal distribution can be performed for distributions of D= « generated by Monte Carlo simulation,

under any particular experimental conditions, as shown in the present paper. When the distribution

of D= « is inadequate, resampling statistical techniques can be carried out for testing disequilibrium
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hypotheses, as was suggested for the two-locus, two allele case (Zapata & Alvarez, 1992, 1993,

1997b). Further research will be necessary to determine the relative merits of the different resampling

methods (see Crowley, 1992; Good, 1994) for testing differences in the intensity of disequilibrium

between pairs of multiallelic loci.
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