
Analysis of Large Genomic Data in Silico: The EPIC-
Norfolk Study of Obesity 

Jing Hua Zhao1, Jian’an Luan1, Qihua Tan2, Ruth Loos1,  
Nick Wareham1 

 
1 MRC Epidemiology Unit, The Strangeways Research Laboratory, Worts Causeway, 

Cambridge CB1 8RN, UK 
2 Dept of Biochemistry, Pharmacology and Genetics, Odense University Hospital, 

Sdr. Boulevard 29, DK-5000, Odense C, Denmark 
 

Jing Hua Zhao, jinghua.zhao@mrc-epid.cam.ac.uk 

Abstract. In human genetics, large-scale data are now available with advances 
in genotyping technologies and international collaborative projects. Our 
ongoing study of obesity involves Affymetrix 500k genechips on approximately 
7000 individuals from the European Prospective Investigation of Cancer (EPIC) 
Norfolk study. Although the scale of our data is well beyond the ability of many 
software systems, we have successfully performed the analysis using the 
statistical analysis system (SAS) software. Our implementation trades memory 
with computing time and requires moderate hardware configuration. By using 
such an established system, it extends some earlier discussions in a more 
constructive and accessible way. We report our findings and give some 
recommendations with SAS. We also compare briefly with alternative 
implementations. Our work is relevant to researchers conducting analysis of 
large-scale data in general, and genomewide association studies in particular.  
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1   Introduction 

The problems associated with large data are common to many fields of research such 
as banking and marketing research, neuroimaging, remote sensing and weather 
forecasting. In human genetics, this is demonstrated by projects such as HAPMAP 
(http://www.hapmap.org) and genomewide association (GWA) studies of complex 
traits such as obesity and diabetes [1,2], both involve many single nucleotide 
polymorphisms (SNPs)[3], the most abundant genetic variants in human genome. 
However, in silico approach to these data is far from adequate, as shown by calls for 
appropriate tools ([4], Genetic Analysis Workshops, http://www.gaworkshop.org); 
meanwhile the established systems and the practice remain to be separated entities 
and to some extent this has been accepted with a great deal of complacency among 
geneticists[5]. Reviews of computer software used in human genetics have been made 



[6-8]. Other notable remarks are “most statisticians have their pet methods, which 
they are loath to give up”[4], “the number of haplotype analysis programs is equal to 
the number of statisticians” (Mark McCarthy, Personal communication). 

 
Earlier, we have described the drawbacks of the current practice in relation to 

established systems [9,10]. Here we use our GWA study of obesity as an example to 
illustrate this further. Our case-cohort design is based on the EPIC-Norfolk totaling 
about 25000 individuals, and the genomewide association study of obesity involves 
Affymetrix (http://www.affymetrix.com/index.affx) 500k genechips on about 7000 
individuals, to be followed by Illumina (http://www.illumina.com) 317k genechips. 
Data of such a scale will be awkward to deal with by the current practice. 

 
In the following sections, we describe pilot and full analyses of obesity in SAS 

(http://www.sas.com, http://en.wikipedia.org/wiki/SAS), a comprehensive software 
system with complete manuals available online, while referring to several other 
software systems. Although our target systems are SAS and Linux, their features are 
generic. All the computer programs are available from the authors. Our contributions, 
both as a workable example and as accessible tool to handle large scale data, along 
with solution to various problems, will be of considerable value to researchers facing 
similar problems. For ease of exposition, we give some background in Appendix, 
detailing the kind of analysis involving call rate calculation, Hardy-Weinberg 
equilibrium (HWE) tests, and regression analyses under several genetic models, with 
adjustment for multiple testing. SAS programs typically consist of a data step to 
prepare for data to be processed by other modules called procedures, in the following 
we will use capital letters to indicate SAS data step (DATA) and procedures (PRINT, 
SQL, etc). Occasionally, we also give codes. 

2   Methods 

To gain a solid ground about the kind of hardware and software systems required, and 
build our solution iteratively, we started with a pilot experiment on our current Linux 
system. This is based on a sample of 400 controls from the European Prospective 
Investigation of Cancer (EPIC) Norfolk study (http://www.srl.cam.ac.uk/epic/) each 
with SNPs from Perlegen (http://www.perlegen.com) 250k genechips (the EPIC 400 
study). This is part of a screening sample from a multistage study of breast cancer in 
EPIC. We then extended this experiment to the full-scale of our obesity study which 
involves about 7000 individuals, 50% of which has SNP data on Affymetrix 500k at 
stage one. 

2.1   The EPIC400 Study 

The flowchart of our implementation is shown in Fig. 1. The input data have three 
sources of information, i.e., genotype, map and phenotype. The genotypic data 
contain actual genotypes for all individuals in the so-called long format (individual 
ID, SNP ID, and genotype). Map information show position of each SNP by 



chromosome. Phenotypic information is in the usual tabular format (individual ID, 
sex, body mass index and other measurements). These three sources of information 
are merged into a combined dataset for analysis. For the purpose of screening SNPs of 
interest, only single point analysis was conducted. Call rates were obtained, as with 
HWE tests for all SNPs, the results of which were used as an inclusion/exclusion filter 
of SNPs in the regression analysis. For instance, SNP information including HWE 
tests can be obtained by chromosome and positions, as input to ALLELE procedure 
which accepts genotype and outputs summary information of SNPs, allele frequencies 
and genotype frequencies. The outputs are stored in ODS (output delivery system) 
databases by chromosomes and SNP positions, and all outputs for individual SNPs are 
suppressed. The raw genotype data and map information can be used to construct 
input files for HAPLOVIEW (http://www.broad.mit.edu/mpg/haploview/) for 
visualization. The SNPs involved can be submitted to ENSEMBL 
(http://www.ensembl.org/index.html) to obtain gene annotations. 

 

 

Fig. 1. A flowchart of the EPIC 400 analysis, with modules in brackets. Genotypes 
(geno) and phenotypes (pheno) are merged (epic) for descriptive statistics (descrip) 
call rates (calls), HWE (hwe), regression (regress) with adjustment for multiple 
testing (multtest) and comparison with theoretical distribution (qqplot). The raw data 
together with map information (map) can also be reformatted (haploview) into 
HAPLOVIEW input files so that specific region in the genome can be visualized, 
with annotation information from ENSEMBL according to SNPs (snp).  

 
In a traditional statistical analysis, the data usually takes the so-called wide format, 

where rows indicate sample and columns variables. Since the number of SNPs is quite 
large, it is sensible to organize genotype data into the so-called long format. Although 



this requires larger amount of storage but the analysis is considerable simpler, for one 
can perform analysis for each SNP in sequence and store the results in a systematic 
fashion. We can take advantage of SAS/GENETICS module for HWE and haplotype 
analysis. All the outputs are available as databases for re-use and it is possible to 
generate data for external software programs such as HAPLOVIEW. The facility of 
result database is possible with ODS. We have kept the comma-separated data in 
compressed format, to be readily processed by pipe mechanism in SAS. 

2.2   The GWA Study 

The EPIC400 analysis described above provides us a skeleton of the implementation 
to be described here. Most importantly, with our initial success we can stick to the 
same hardware and software systems. However, we soon realized that it is not feasible 
to run all the data, even individuals chromosomes using the simple code just we had. 
  

Although our original plan was to use grid computing via SAS/CONNECT, it takes 
some efforts to tune the grid, we also try to resolve this by partitioning the data evenly 
within each chromosome i, i=1,…22, X, to be analyzed one at a time with the 
individual results later being assembled. The data partition works as follows, we 
obtain the number of records in the dataset and store into a macro variable in the SAS 
system environment (N), a group indicator is then created dynamically according to 
ceil(s/N*_n_), where s is the number of partitions and _n_ is the running record 
number from SAS. Partition or particular SNPs can be obtained via a where clause in 
the SQL procedure. We can simply call the macro a number of times each with a 
different chromosome number. With four nodes available during the experiment, we 
split chromosomes into four groups run separately on each node. The first few 
chromosomes are fairly long and 30 partitions were used, while most other 
chromosomes 20 partitions were sufficient. Similarly, we have used where clause to 
exclude individuals who failed quality control criteria in the analysis. The quality 
controls are with respect to call rate (>94%), discordance in SNP pairs with r2=1 in 
HAPMAP (>5%), heterozygosity (<23%, or > 30%), concordance with another DNA 
(related or duplicated), the where clause to a SQL statement is simply where id not in 
(select id from exclude); where exclude contains the list of individuals to be excluded. 
The simplicity is remarkable. The analysis was performed while the data from 
Affymetrix were processed and examined. After initial results were obtained, 
additional data arrived. However, it is easy to incorporate the extra individuals. Since 
these data have exactly the same structure, we used pipe command such as filename 
case pipe “gunzip –c data.gz extradata.gz” to be used by SAS data step statement 
infile case dlm=’09’x. No further code alteration is necessary. This feature is generic; 
for instance it will allow for reading data on all chromosomes at once. 
 

To show further the complexity one might get into as an end-user of the genomic 
data (more details is available from the SAS program rotate.sas provided), the finding 
from the extracted data has been reported[11]. The Affymetrix 500k experiment was 
designed such that case and cohort samples are put in the same plate to reduce 
potential bias due to experimental conditions. Incidentally, at one time this remained 



to be the case when the data were distributed to us, so that case and cohort samples in 
these plates have been rotated 180 degrees according to some pre-specified rules, the 
genotype of a case actually corresponds to the genotype of another individual in the 
cohort. The information has been given in three files containing the plate number for 
cases, for cohort controls and rotation rules. The problem was solved as follows. First, 
replace the case dataset and cohort dataset each with an additional key variable called 
code, then merge the cases with the data containing rotation rules, each rule 
specifying the labels of source of plate and target plate. The key word code here is 
also the label of source plate. Now rename code in the data just generated as source, 
and the target label to code. Then merge the combined data with the cohort sample, 
using key word code, with the genotypes in both cases and cohort renamed. We then 
merge the combined data with raw genotypes data using subject ID. We then swap the 
genotypes from cases and cohort. We finally append parts of the combined file 
involving cases and controls, with appropriate re-labeling. Clearly, this is a less 
daunting task for database management than using high-level language such as 
C/C++. 

3   Results 

The study results are largely standard concerning quality control including call rates, 
HWE, minor allele frequencies and results from regression analysis on additive 
models, some of which has been reported[11]. Independent case-control analyses 
have been performed within the MRC Epidemiology Unit, the Wellcome Trust 
Sanger Institute and University of Cambridge and all gave similar results, through 
which 149 SNPs have been chosen for our second stage genotyping. We give some 
technical results here as it is prohibitive at this stage to compare the timing with 
alternative implementations. Our collaborators at Sanger Institute used Stata 
(http://www.stata.com), while colleagues at University of Cambridge used customized 
standalone programs. Both were grid computing environments with Perl scripts and C 
programs to extract the raw data and feed them into Stata. Their implementations are 
thus more segmented and likely to be more difficult to use by others. Grid computing 
from Stata is recently available but the system is still lack of supported routines for 
genetic analysis. During our analysis, another independent work has been carried out, 
but our experiences showed the package requires[12] database management systems 
for allele coding and our experiences showed that it is yet to tune for actual analyses. 
In contrast, the software we developed is applicable to most research groups with 
moderate resources and for both Linux and Windows systems. The approach is also 
generic and not limited to genetic data.  
 

The SAS datasets are approximately 30GB for the pilot study if some intermediate 
results are included; the running time is about a day or two on our Intel Linux systems 
with 2GB RAM. It was therefore estimated that the full obesity project is 
approximately 30 times larger but if we spread the task across chromosomes on a 
Linux cluster of 30 nodes the task can be furnished at similar speed. The GWA data 
used about 65GB disk space, while the long format with some phenotypic information 



(age, sex, BMI, case/control label and cohort indicator) required several folds larger, 
in total, just over 380GB. The major difference between the pilot study and the full 
GWA obesity case-cohort study was the need for data partitioning between and within 
chromosomes. As expected, the first batch (chromosomes 1-5) took the longest time 
whereas the fourth batch (chromosomes 18-22, X) was the fastest. Altogether, the 
whole analysis took about three days from data management, allele coding, phenotype 
merging, and statistical analyses. 

 
Although SQL procedure provides functions such as left join but it can generate 

files of considerable size and it is much more efficient to use the in-line query given 
earlier, i.e. select * from a where rsn in (select rsn from b), where a,b are datasets 
containing the SNP name to be intersected. We have used this for selecting data for 
HAPLOVIEW or gene-specific analysis. We also found the performance of SAS 
procedures is heterogeneous. DATA step and procedures such as PRINT were less 
memory-efficient than SQL procedure. To extract the unique SNP IDs from the raw 
data, both SORT procedure with NODUPKEY option and SQL procedure with 
unique() function in the SELECT statement failed to work. However, one may use 
FREQ procedure since it can produce frequency tables for SNPs with non-missing 
data. We further noted some caveats associated with SAS. While the system was 
designed to handle large data, the implementation of its procedures is heterogeneous. 
For instance, we noted in general, SQL procedure is better than DATA step and 
PRINT procedure and can perform more sophisticated data management tasks. We do 
not necessarily need to segment the data in order to use MEANS and FREQ 
procedures. On the other hand, the SAS/GENETICS procedures often run into 
memory problems, but fortunately SAS has many alternative ways to do the same 
task. As the usage of disk space is quite heavy, it would be more useful to enable 
SAS/GENETICS procedures to read phenotype data separately. Over years the SAS 
language has been enriched but remains very stable and its powerful macro facility is 
also an extra advantage to many other software systems. We found that SAS uses a 
default value of 10 for the width of its character variable, which is insufficient to 
contain the full SNP names. When appending the segmented datasets the width of the 
variable rsn containing SNP names may be indicated as “Variable rsn has different 
lengths on BASE and DATA files (BASE 13 DATA 10)” from SAS’s log, and SAS 
exits with warnings. However, we found that there is no loss of information despite 
this. When analyses are done by SNP names (rsn), SAS would change the SNP names 
containing dash to underscore (e.g. SNP_A-1969580 to SNP_A_1969580) so we can 
use tranwrd(rsn, “A_”,”A-”)  to convert it back in order to link with external data, e.g. 
gene annotation data. 

4. Discussion 

We have been able to furnish a timely analysis of our GWA analysis. Significant 
features of our implementation are its integrity, simplicity and generality. Although 
SAS can work with other database management systems its own SQL procedure is 
very powerful and comprehensive statistical analysis can be performed. Most tasks 



can be performed with small numbers of lines of coding. The programs we developed 
are modular and can run without change under Windows, with an MS-DOS batch file 
to call SAS from MS-DOS prompt. Besides being useful as it is, our implementation 
can potentially be used to prepare data and benchmark for standalone programs and 
software which require coded input. 
 

We have focused on single-point analysis, and the problem can be more complex 
when multipoint analysis is involved[13]. We are yet to develop fully into other types 
of analysis available from SAS, e.g., principal component analysis and partial least 
squares method for structured association, cluster analysis for study of relatedness and 
outliers, covariance structure modeling for pathway analysis, just to name a few. As 
the SAS system is widely available, our work will be welcome. 

 
Part of our next experiment will be for grid computing using clusters, which is now 

the state-of-the-art alternative to supercomputers. SAS/CONNECT is sufficient and it 
can maintain communications between nodes of a cluster, and between personal 
computers and remote server system. The functions include the data transfer between 
local and remote computers via data transfer, remote directory read/write and then 
task scheduling.  
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Appendix: Some background of design and analysis of GWA 

Reviews[14,15] on statistical genetics in general and specific to genetic 
association[16] are available. Due to the availability of large number of genetic 
variants and particularly SNPs, the traditional design for genetic epidemiology using 
linkage analysis of family data examining co-segregation of genetic markers and 
putative disease loci has shifted to association designs using both family-based and 
population-based data. This was foreseen over ten years ago[17-20] when 
comparison[18] of affected sib-pair linkage, transmission/disequilibrium association 
tests showed that association tests are far more powerful. Case-control design has 
been the most established, with substantial contributions from biostatisticians[21]. 
They are advantageous over family-based designs with its ease to implement and can 



be imbedded to many large epidemiological cohorts. Moreover, the association 
studies can be readily carried out and/or become an integral part in many established 
epidemiological cohorts. To reduce cost without compromising statistical efficiency, 
staged design is increasingly used due to the ever increasing scale of studies[22-24], 
which typically involve tens of thousands of SNPs, believed to hold the key to 
common diseases and population history; several recent papers provided such 
evidence[1,2,25]. The early work on staged design was in line with the development 
in genetic epidemiology in general, e.g. linkage studies [26-29], followed by 
association studies including WGA [30-36].  
 

A widely discussed topic in genetic epidemiology or statistical genetics is the so-
called model-based or model-free method [37-40], indicating the mode of inheritance 
of the disease locus, e.g. recessive, dominant and additive models, where one codes 
the three genotypes according to the number of minor or less frequent allele of a SNP. 
Under additive model, the number of minor alleles range from 0 to 2. Under a 
dominant model, any genotype containing at least one minor allele is coded into 1 
otherwise 0. Under a recessive model, a genotype is coded as 1 only if both alleles are 
minor. Moreover, HWE (http://en.wikipedia.org/wiki/Hardy-Weinberg_principle)  
test is a customary task to furnish[41-44]. Indeed, experiences of many researchers 
including the authors have indicated deviation from HWE may suggest genotyping 
error, although this is less clear with large-scale genome data. It is useful to consider 
HWE in conjunction with call rate, the proportion of successful SNPs on a particular 
individual. Correlation analysis can be done between HWE and call rates to indicate 
genotype errors. It is worthwhile to note that for chromosome X, we have 
implemented HWE tests in women only, and women and men combined, considering 
men contribute only one copy of the alleles on chromosome X. A number of issues 
need to be considered for further analysis, including multi-locus modeling such as 
haplotype analysis[39], and meta-analysis across studies since not individual data are 
available from all studies. As noted earlier, comprehensive systems such as SAS will 
prove to be more useful in these settings. 

 
Seeing that case-control design is easy to implement but with the drawback of 

control samples being highly selected, which can potentially lead to bias when used 
for any other purposes, our GWA study uses a case-cohort design, where a random 
sample of individuals is selected as controls. The sub-cohort is representative and can 
be used to compare against a wider range of phenotypes. The merits of cohort design 
in genetic association has been recognized recently[45,46]. In addition, case-control 
studies can be nested within the cohort while a case-cohort design uses a randomly 
selected subset of the cohort. The case-cohort design is comparable to a two-stage 
case-control study in which each stage consisting of approximately 1700 cases and 
controls according to recent published work[47], giving larger cohort sample of about 
2500 at each stage but allowing for some cases to be included. Reports[34,35] 
suggested that 50:50 split of study samples between stages 1 and 2 achieves optimal 
power. However, compared to many studies our stage one has considerable more 
power to justify our SNP selection for the second stage genotyping. 


